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Abstract. We test the influence of the Coulomb interaction on the thermodynamic and cluster generation
properties of a system of classical particles described by different lattice models. Numerical simulations
show that the Coulomb interaction produces essentially a shift in temperature of quantities like the specific
heat but not qualitative changes. We also consider a cellular model. The thermodynamic properties of the
system are qualitatively unaltered.

PACS. 05.70.Ce Thermodynamics functions and equations of state – 64.60.Cn Order-disorder transfor-
mations; statistical mechanics of model systems

1 Introduction

In the recent past the success of percolation models [1]
and their link with other generic approaches like Ising and
Potts [2,3] has led to the development of many lattice
models [4–12] which were used as sensible albeit schematic
descriptions of excited disassembling nuclei. As simple as
they may appear, their thermodynamic properties were
considered as being at least qualitatively these of bound
nucleon systems which interact essentially by means of the
short-range nuclear interaction. It was tacitly implied that
quantum effects do not qualitatively alter those properties,
at the excitation energies which characterize fragmenting
nuclei.

The introduction of time-independent stationary de-
scriptions of fragmented systems presupposes that these
systems are in thermodynamic equilibrium. Whether this
is a realistic assumption and is effectively realised is still
an open question. There exist however many data which
show that most experimental results can be understood in
this framework [1].

The present contribution follows a double objective.
First, in the framework of lattice models, we want to anal-
yse the effect of the Coulomb interaction which is superim-
posed onto the short-range nearest-neighbour interaction
which mimics the nuclear potential. This is done in the
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framework of the so-called Ising Model with Fixed Magne-
tization (IMFM) [10] and its extension to the case where
proton-neutron are differentiated from proton-proton and
neutron-neutron interactions. The treatment of the long-
range interaction is performed on the same footing as the
short range one i.e. without any approximation in the cal-
culations of the interaction between a given proton and all
the others in the system. In a second part, we relax the lat-
tice structure of the system. Fragmenting nuclei are disor-
dered systems whose constituents are not located at fixed
positions on a regular lattice like in crystals but more in
the continuum of position space. A priori, a more realistic
description of such systems is realised in the framework of
so-called cellular models [7]. We show and discuss whether
the freedom to occupy any space position leads or not to
qualitative changes in the thermodynamic and topological
(fragment formation) properties of the system.

In sect. 2 we present a sketchy description of the IMFM
model and the way we implement the Coulomb interac-
tion which is close in form with recent work by Samaddar
and Das Gupta [8]. We present and discuss the caloric
curve, the specific heat and the phase diagram for un-
differentiated and differentiated protons and neutrons. In
this framework, we work out the cluster content of the
system and related observables for different values of the
temperature. Most of the simulations are performed in the
framework of the canonical ensemble. A comparison with
microcanonical calculations is also presented. In sect. 3 we
introduce the cellular model and study its thermodynamic
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properties which will be confronted with those obtained
with the lattice model. Section 4 is devoted to comments
and conclusions.

2 Effect of the Coulomb interaction on finite
systems described by Ising-type lattice
models

2.1 The models and their implementation

The classical system with A particles located on a cubic
lattice with L3 sites is described by Hamiltonians of the
form

H = −
∑
〈i,j〉
VKiKj

ninj +
1
2

∑
i�=j

e2ZiZj

rij
, (1)

where Ki (i = 1, · · · , L3) labels either a proton (p) or a
neutron (n). The short-range potential VKiKj

acts only
between pairs of nearest-neighbour particles 〈i, j〉, when
the sites i and j are both occupied (ni = nj = 1), unoccu-
pied sites correspond to nk = 0. The interaction strengths
are chosen in two different ways, either Vnn = Vpp = Vnp =
ε = 5 MeV (undifferentiating potential, case U in the se-
quel) or Vnn = Vpp = 0, Vnp = εnp = 5.33 MeV (dif-
ferentiating potential, case D in the sequel). The latter,
a priori more realistic choice has been used by different
authors [11–14], the choice of strength is such that the
classical ground-state energy of finite nuclear systems is
reproduced [15].

The Coulomb term in (1) is such that Zi = 0 or 1
if particle i is a neutron or a proton, respectively. The
distance between particles i and j, rij , is determined on
a lattice in which the distance between sites is fixed to
d = 1.8 fm.

The canonical partition function reads

Z(β) =
∑

[ni,Zi]

e−βH · δ∑
i
ni,A

· δ∑
i
Zi,Z

, (2)

where Z is the total number of charges in the system. In
the calculations Z/A was fixed at the value of 0.4.

The thermodynamic properties and the space occupa-
tion by particles and bound clusters are obtained from re-
alisations generated by means of Metropolis Monte Carlo
simulations in which particles are moved on the lattice.
Technical details about the algorithm used in the frame-
work of the canonical ensemble have been given else-
where [10]. We selected 5× 104 realisations corresponding
each to 10× L3 Metropolis steps.

We have also performed calculations in the framework
of the microcanonical ensemble. A given realisation (r)
with fixed energy E has a weight

WE(r) ∼ (E − U(r))DA
2 −1 ·Θ(E − U(r)) , (3)

where U(r) is the potential energy, Θ is the step function,
D the space dimension, here D = 3. Detailed balance fixes

Fig. 1. Caloric curves and specific heat for a lattice model
with A = 300 undifferentiated particles (protons and neutrons)
in a volume L3 = 103. Full and open lines correspond, respec-
tively, to results including or not the Coulomb interaction. The
specific heat calculated with the Coulomb interaction in the
framework of the microcanonical ensemble is represented by a
dotted line.

the acceptance rate from a realisation (r) to a realisation
(r′) to

Wr→r′ = min
[
1,
WE(r′)
WE(r)

]
. (4)

The simulations were done with open boundary con-
ditions on the edges of the lattice both in the case of the
canonical and microcanonical ensembles.

2.2 Thermodynamics and cluster size distributions

The quantities which we consider here are the caloric curve
and the specific heat for fixed volume which in the canon-
ical ensemble reads

CV =
d〈U〉
dT

=
1
T 2

(〈U2〉 − 〈U〉2) . (5)

The brackets stand for an average over an ensemble of
systems. In the microcanonical ensemble the temperature
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Fig. 2. Phase diagrams (ρ, T ) with Coulomb interaction (left)
and without Coulomb interaction (right) for undifferentiated
particles. The full line indicates the phase separation, the
dashed line the separation line between systems with heavy
clusters (below) and light clusters and particles (above). See
the text.

is related to the kinetic energy K of the system by

T = 2〈K〉/AD . (6)

Then the specific heat can be cast in the simple form [16]

CV =
DA

2

[
DA

2
−

(DA
2

− 1
)
〈K〉

〈 1
K

〉]−1

−DA . (7)

In the absence of the Coulomb interaction clusters of
bound particles are determined in the same way as in
ref. [9] by the application of the Coniglio-Klein prescrip-
tion [17] which fixes the condition under which a particle
located on a site, which is topologically connected to a
cluster, does effectively belong to this bound cluster. The
test between nearest-neighbour pairs of particles is made
by means of the probability p = 1 − exp(−ε/2T ) in case
U , with ε replaced by εpp, εnn, εnp in case D, depending on
the nature of the particles which are involved. The prob-
ability p is then compared to a random number ξ ∈ [0, 1].
If ξ ≤ p the particles are considered as being bound, if
ξ > p they are not.

The Coulomb interaction is taken into account in case
U and for a pair of neighbouring charged particles by re-
placing ε by ε − e2/d, where d is the (fixed) distance be-
tween the particles. In case D, p is not modified since
neighbouring charged particles are not bound εpp = 0.
This procedure deserves some comments. The identifica-
tion of fragments by means of the Coniglio-Klein pre-
scription is conceptually valid if the interaction is short
ranged, i.e. concerns only nearest neighbours. This is not
the case with the Coulomb interaction which acts over

Fig. 3. Same as fig. 1 for differentiated particles (protons and
neutrons). Calculations are done in the canonical ensemble.

a large range. We restricted the tests with Coulomb for
the connection between particles to nearest neighbours.
There is no real justification for this, since it is not possi-
ble to invoke screening effects, the classical Debye-Hückel
screening length being much larger than the size of the
system. Hence, as it stands, we have no real means to
estimate the validity of our procedure, except for quan-
titative arguments, i.e. the effect is certainly weak since
e2/d 
 0.8 MeV should be compared to ε 
 5 MeV and
further the Coulomb interaction acts only on protons in a
system where N/Z = 1.5 (N = number of neutrons).

The cluster size distribution can be determined for
any fixed density ρ = A/L3 and temperature T . From its
knowledge one can work out different observables. Here,
we restrict ourselves to the behaviour of the largest cluster
Amax as a function of logS2, with S2 = m2/m1 and mk

the k-th moment of the distribution [18,19].

2.3 Effect of the Coulomb interaction on the
thermodynamic properties of the system

The effect of the Coulomb interaction has been studied in
both cases U and D with the two-body strengths given
in 2.1. Figure 1 shows the caloric curve and the specific
heat associated to a system with L = 10 and ρ = 0.3
for case U . Calculations have been performed in both the
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Fig. 4. Cluster size multiplicities for different temperatures.
Left column: with Coulomb interaction. Right column: without
Coulomb interaction. See the text.

canonical and microcanonical framework. As it can be seen
in fig. 1, on the specific heat, the results are undistinguish-
able. The point of interest is the fact that the Coulomb
interaction induces a sizable shift in the energy for fixed
temperature on the caloric curve which increases approx-
imately parallel to each other and a reduction of about
1.5 MeV in the temperature corresponding to the maxi-
mum of CV . The observed reduction of temperature can
be understood by means of the following arguments. The
Coulomb interaction takes a part of the total available
energy and hence the thermal energy is decreased leading
to a decrease of temperature. With changing excitation
energy the Coulomb energy does not change much, hence
the energy differences between the cases without and with
Coulomb interaction stay approximately constant. This
behaviour is general, whatever the size of the system and
its density. The expected drop in the temperature in the
presence of Coulomb reflects also in the (ρ, T ) phase di-
agram shown in fig. 2, in which the coexistence line has
been fixed by following the maximum of CV . One may
mention the slight dissymmetry with respect to ρ = 0.5.

Fig. 5. Size of the heaviest cluster Amax vs. S2 = m2/m1 rep-
resented for the different Monte Carlo events. m2 and m1 are
the second and first moments of the cluster size distribution.

For larger ρ the Coulomb effect is larger than for small
densities and consequently produces a stronger shift in
temperature which defines the border of the coexistence
region. This is due to the fact that higher ρ corresponds to
stronger packing, hence, charges interact more effectively.
In case D, when the particles are differentiated, the re-
sults are qualitatively similar for both the caloric curve
and the specific heat with a similar shift of 1.5 MeV in
temperature, see fig. 3. In this case, the maximum of CV

is much more damped when Coulomb is present than in
case U , and the transition region is therefore less precisely
defined.

One may notice that in both cases, with and without
Coulomb interaction, the caloric curve is unable to give
an indication about the order of the transition. In former
studies [10] it has been shown through the attempt to
determine critical exponents that the transition could be
continuous, but it came out that the result was not conclu-
sive because of the small size of the system used in order
to apply finite size scaling arguments. Microcanonical cal-
culations on small systems [20] also seemed to indicate
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Fig. 6. Average isotopic ratios N/Z and fluctuations widths
in the clusters as a function of the temperature in the presence
and absence of the Coulomb interaction. Volume L3 = 103,
density ρ = 0.3. See comments in the text.

the continuous nature of the transition, no backbending
in the caloric curve could be observed. This point was
later discussed in ref. [12] and recently it was shown by
Pleimling and Hüller [21] that the backbending can be ob-
served if the system gets large enough, which shows that
the transition is in fact first order when one goes to the
thermodynamic limit.

2.4 The effect of the Coulomb interaction on the
cluster size distributions and related observables

The behaviour of the mass distribution of clusters is shown
in fig. 4 for case D, temperatures lie in the range 3–5 MeV.
One observes again a shift in the behaviour of the sys-
tem when the Coulomb interaction is switched on. For
the same temperature, the distribution without Coulomb
contains more larger clusters. This is understandable since
the long-range interaction is repulsive and tends to split
the bound fragments. The whole picture is also consistent
with the thermodynamic behaviour of the system. This is

Fig. 7. Isotopic ratios N/Z in the clusters as a function of the
cluster size. Upper part (a): with Coulomb interaction. Lower
part (b): without Coulomb interaction.

seen in fig. 2 on the line which separates the heavy cluster
behaviour below the line from the light cluster behaviour
above it and stands as the finite size remnant of a con-
tinuous set of transition points in the percolation frame-
work [22]. Indeed, the line lies at lower temperatures when
the Coulomb interaction is present. The Coniglio-Klein
procedure is the correct prescription in order to identify
bound clusters of interacting particles with kinetic energy.
It ensures that a given particle is bound to a cluster or not
by means of separation energy arguments [9]. One would
expect that this separation line ends at ρ = 0.5 on the
coexistence line. This is not the case here. It may be due
to the criterion (the maximum of CV ) which is used here
in order to fix this coexistence line. It clearly corresponds
to a finite size effect. Indeed, we checked that the distance
between the separation line and the ρ = 0.5 point on the
coexistence line gets smaller and smaller when the size of
the system increases.

Figure 5 shows the correlation between Amax and S2

in case D. Events which come at large Amax correspond
to the presence of heavy clusters, those with small Amax
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Fig. 8. Canonical and microcanonical caloric curves and spe-
cific heat in the framework of the cellular model for a system
of A = 256 particles in a volume L3 = 83. See comments in the
text.

to the presence of many small clusters. The intermediate
region shows events which correspond to the transition
region in the percolation framework. As it can be seen,
this region appears again for lower temperatures in the
case where the Coulomb interaction is acting.

A further observable of physical interest which can
be experimentally determined is the ratio of the number
of neutrons to the number of protons, N/Z, which are
present in the clusters [23]. Figure 6 shows the evolution
of this ratio for clusters of mass A = N +Z ≥ 40 with in-
creasing temperature for case D. One observes a decrease
of the relative number of neutrons, both in the absence and
the presence of the Coulomb interaction. This is in agree-
ment with the results of ref. [14] and, for heavy clusters,
with the experimental results of ref. [24]. The decrease
is apparently slightly more pronounced in the case where
the Coulomb interaction is active, although, as indicated,
the fluctuations from event to event increase with increas-
ing temperature. This result may appear to be somewhat
paradoxical. It may be due to the fact that for fixed tem-
perature the cluster size distribution is different in both
cases, as we have already seen above.

Fig. 9. Phase diagrams (ρ, T ) in the framework of the cellular
model for a system with A = 256 particles in a volume L3 = 83.
The dashed line has the same meaning as in fig. 2.

Finally, the evolution of the N/Z ratios with the mass
is shown in fig. 7 for case D. In fig. 7a the results corre-
spond to the case where the Coulomb interaction is in-
cluded. The ratio drops from N/Z ∼ 1.6 for A = 3 to
1.2 for the largest masses. A similar behaviour is observed
in fig. 7b for a higher temperature and in the absence of
the Coulomb interaction. Hence lighter species are more
neutron rich than heavier ones. This fact which has al-
ready been observed in the calculations of ref. [14] in the
absence of the Coulomb interaction remains valid when
Coulomb is present and seems to be in agreement with
the experimental findings [25,26].

3 Cellular model approach to the description
of fragmenting nuclei

A system of A particles is contained in a cube of volume V
in 3D space and divided into cells of volume d3, V = L3d3.
Cells are either empty or occupied by at most one parti-
cle characterized by its random position ri (i = 1, · · · , A)
in the cell and random momentum pi [7]. The particles
are classical. Neighbouring particles interact through a
short-range two-body potential V0(rij) which is repulsive
at short distance and attractive for rij ≥ 1.55 fm [27]. In
the calculations d = 1.8 fm. The Coulomb interaction is
not taken into account. The Hamiltonian is written as

H =
A∑

i=1

p2i
2m

−
∑
〈ij〉
V0(rij)ninj , (8)

with ni = 0 (1) if the cell i is empty (occupied).
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Similarly to the lattice case we have worked out the
thermodynamic properties of such a system in the frame-
work of both the canonical and microcanonical ensemble.
The generation of configurations by means of a Metropo-
lis Monte Carlo procedure is performed in the following
way. Starting from an initial configuration in which the
particles are disposed randomly into the available cells,
one performs either the move of a particle into an empty
cell, or changes the position of a particle in its cell. Each
operation is performed with a probability 1/2, the appli-
cation of the Metropolis Monte Carlo algorithm leads to
a minimum in energy in the framework of the canonical
ensemble. In the case of the microcanonical ensemble the
test is the one described in sect. 2.1, eq. (4).

Typical results can be seen in fig. 8 which shows the
caloric curve and the specific heat. Both ensembles lead to
a very close behaviour of these quantities. This behaviour
is qualitatively similar to those obtained with lattice mod-
els. The same is true for the corresponding phase diagram
shown in fig. 9. The thermodynamic phase coexistence
line shows two slight maxima symmetrical with respect to
the critical point at the density ρ = 0.5. This behaviour
may be due to the way in which we define the coexistence
line (maximum of the specific heat) and (or) related to fi-
nite size effects, see ref. [10]. The present calculations have
been performed for a fixed volume with 83 sites and the
possible transition looks continuous in this case. The small
depression for ρ = 0.5 reminds the same effect which was
found in the IMFM calculations of ref. [10]. The dotted
line shows the separation line of heavy and light clusters
as in the case of the lattice models. Its behaviour is very
similar to the one observed in fig. 2. The fact that its
lower end does not coincide with ρ = 0.5 may have the
same reasons than those presented in sect. 2.4.

4 Summary and conclusions

In the present work we aimed to present and discuss two
points related to the description of nuclear fragmentation
by means of microscopic classical models.

We first looked for the effects induced by the long-
range Coulomb interaction which acts between charged
particles in the presence of a short-range attractive po-
tential mimicking the nuclear interaction. We have shown
on a lattice model that the Coulomb interaction does not
induce any qualitative change in the thermodynamics and
cluster size distribution in the different phases in which
the system exists. The essential quantitative effect is a
global systematic and sizable shift of the temperature of
the system by about 1.5 MeV in the models which have
been worked out both in the thermodynamic and cluster
transitions. The same type of effect has already been men-
tioned in former studies [28]. We have also investigated the
behaviour of the cluster content, both in the absence and
presence of the Coulomb interaction.

In a second part we introduced a cellular model
aimed to describe a disordered system of particles
in thermodynamic equilibrium in the framework of the

canonical and microcanonical ensembles. The results show
that such models, though a priori more realistic than lat-
tice models, are descriptions which lead qualitatively to
the same properties, at least when finite systems are con-
cerned. This leads to the conclusion that lattice models
which are simple to handle should be good enough for a
schematic description of nuclear fragmentation processes,
if the generated systems are in thermodynamic equilib-
rium. There remains, however, the problem concerning the
importance of quantum effects. These may be the weaker
the higher the temperature, but this point has to be con-
firmed.
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